Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa

SÉRIES TEMPORAIS

Mestrado em Econometria Aplicada e Previsão (2012/13) Exame: Época Normal Data: 15/01/2013 Duração: 2 horas

Nota: Consulta limitada a 2 folhas A4.

- 1. A aplicação do modelo de Holt-Winters multiplicativo a uma série com 144 observações mensais, com $Y_{144}=432$ e $\gamma=0.15$, conduziu às seguintes grandezas: $S_{132}=0.89$, $S_{141}=1.05$, $S_{142}=0.92$, $P_{153}=553.86$ e $P_{154}=488.63$. Face ao exposto, obtenha uma previsão para o instante t=156.
- 2. Considere a seguinte função definida no conjunto dos números inteiros:

$$\rho_k = \begin{cases} |k| & \text{se } |k| \le 1 \\ 2 - |k| & \text{se } 1 < |k| \le 2 \\ 0 & \text{se } |k| > 2 \end{cases}$$

Será que esta função pode ser considerada uma FAC de um processo estacionário? Justifique.

- 3. Seja Y_t um processo estacionário de média nula. Considere os processos $X_t = (1-0.4B)Y_t$ e $W_t = (1-2.5B)Y_t$
 - a) Determine as funções de autocovariância de X_t e W_t .
 - b) Mostre que X_t e W_t têm a mesma FAC.
- **4.** Considere um modelo ARIMA(0,2,3).
 - a) Escreva o modelo com e sem o operador atraso.
 - b) Determine a expressão geral do preditor com origem em *t* e horizonte *m*.

5. Considere um modelo ARIMA(0,1,1). Mostre que:

$$Var[e_t(m)] = \sigma_\varepsilon^2 (1 + (m-1)(1-\theta^2))$$

6. Considere um modelo ARIMA:

$$(1-0.2B)(1-B)Y_t = (1-0.8B)\varepsilon_t$$

com $\sigma_{\epsilon}^2=4$. Suponha que $Y_{49}=30$, $Y_{48}=25$ e $\epsilon_{49}=-2$. Calcule as previsões da série para os instantes 50, 51, 52 e 53.

7. Represente graficamente as funções de resposta às seguintes intervenções:

a)
$$\left[\frac{\omega_0}{(1-\delta B)} + \frac{\omega_1}{(1-B)}\right] P_t^{[T]};$$

b)
$$\left[\omega_0 + \frac{\omega_1 B}{(1 - \delta B)}\right] P_t^{[T]}$$
.

Questão	1	2	3a	3b	4a	4b	5	6	7a	7b
Pontuação (0-20)	3.0	3.0	1.5	1.5	1.0	2.0	3.0	3.0	1.0	1.0